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Universal critical behavior of aperiodic ferromagnetic models

T. A. S. Haddad,* S. T. R. Pinho,† and S. R. Salinas
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~Received 30 June 1999; revised manuscript received 22 September 1999!

We investigate the effects of geometric fluctuations, associated with aperiodic exchange interactions, on the
critical behavior ofq-state ferromagnetic Potts models on generalized diamond hierarchical lattices. For lay-
ered exchange interactions according to some two-letter substitutional sequences, and irrelevant geometric
fluctuations, the exact recursion relations in parameter space display a nontrivial diagonal fixed point that
governs the universal critical behavior. For relevant fluctuations, this fixed point becomes fully unstable, and
we show the apperance of a two-cycle, which is associated with a novel critical behavior. We use scaling
arguments to calculate the critical exponenta of the specific heat, which turns out to be different from the
value for the uniform case. We check the scaling predictions by a direct numerical analysis of the singularity
of the thermodynamic free energy. The agreement between scaling and direct calculations is excellent for
stronger singularities~large values ofq). The critical exponents do not depend on the strengths of the exchange
interactions.

PACS number~s!: 05.50.1q, 05.10.Cc, 05.70.Fh, 64.60.Ak
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Quenched disorder may change the critical behavior
ferromagnetic spin systems@1#. Although disorder provides
the more usual examples, there are alternative ways to b
translational invariance. For instance, the interest in
study of quasicrystals@2# inspired a number of proposals o
deterministic schemes to build spatially aperiodic structu
In analogy with the Harris criterion to account for the effec
of quenched disorder, Luck@3# developed a heuristic reason
ing to gauge the relevance of geometric fluctuations~associ-
ated with aperiodic interactions! on the critical behavior of
ferromagnetic models on Bravais lattices. In a recent pu
cation @4#, Luck’s criterion has been exactly derived for
q-state ferromagnetic Potts model on a diamond-type hie
chical lattice. Now, we revisit this problem to show the e
istence of an attractor that gives rise to a novel class
critical behavior.

Many investigations of aperiodic classical@5# and quan-
tum @6# Ising chains, and two-dimensional Ising models w
aperiodic layered interactions@7#, use the formalism of sub
stitution rules on alphabets for the construction of infin
aperiodic sequences of elements, which are then assoc
with coupling constants along a direction of the lattice. W
have taken advantage of the structure of hierarchical latt
@8# to build layered aperiodic models@9#, which are then
amenable to simple~and exact! renormalization-group calcu
lations. In parameter space, there is always a ‘‘diagona
nontrivial, fixed point of the renormalization-group recursi
relations. For relevant geometric fluctuations, this diago
fixed point, associated with the critical behavior of the u
form ~equal couplings! model, becomes fully unstable, an
therefore, cannot be reached from any nonuniform ini
conditions in parameter space@4#. The critical behavior of
the aperiodically perturbed system, in case of a phase tra
tion, should then be governed by another attractor in par
eter space.
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Relevant aperiodicity is believed to drastically weaken,
eventually suppress, the critical singularities@6#. Recently,
convincing Monte Carlo evidence@10# has been presented t
indicate that relevant layered aperiodicity in the 8-state P
model on the square lattice drives the phase transition f
first to second order~with critical exponents independent o
the strength of the couplings!. In the present paper, we als
detect a weakening of the critical singularities for releva
geometric fluctuations. Besides being numerically exact,
results can be regarded as equivalent to a Migdal-Kada
approximation for the analogous problems on Bravais
tices, and may thus be put in perspective with the Mo
Carlo findings@10#.

The q-state Potts ferromagnet is defined by the Ham
tonian

H52q(
( i , j )

Ji , jds i ,s j
, ~1!

wheres i51,2, . . . ,q for all sites of a lattice,Ji , j.0, and the
sum over (i , j ) refers to nearest-neighbor pairs of sites. W
assume that the couplings can take only two values,JA and
JB , associated with the sequence of lettersA and B of an
aperiodic substitutional word. To generate this sequence
can use, for example, the successive iterations of a per
doubling rule, given by (A,B)→(AB,AA). In Fig. 1, we
show a simple diamond hierarchical lattice with aperiod
interactions according to this sequence~the letters, and the
corresponding coupling constants, are chosen to mimic a

FIG. 1. Three successive generations of the simple diam
lattice (b5m52).
3330 © 2000 The American Physical Society
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ered structure!. In general, we may consider basic ‘‘dia
monds’’ with m branches andb bonds along each branch
and generate hierarchical lattices with intrinsic, or frac
dimension,D5 ln(mb)/ln(b). In each one of these structure
aperiodicity may be implemented by a substitution rule
the form (A,B)→(An1Bb2n1,An2Bb2n2), with 0<n1 ,n2,b.
These sequences are characterized by a substitution m
with eigenvaluesl15b and l25n12n2. The asymptotic
form of the fluctuations in the number of letters depends
the wandering exponent,

v5
logul2u
log l1

. ~2!

Now, we decimate the internal degrees of freedom of
diamonds to write exact recursion relations for the redu
couplings. There is always a nontrivial fixed point on t
diagonal of parameter space, which is associated with
critical behavior of the uniform model. This fixed point b
comes fully unstable for@4,9#

v.12
D

22au
, ~3!

where the critical exponentau , associated with the specifi
heat of the underlying uniform model, depends onq, m, and
b ~note that the transition is always continuous for the fer
magnetic Potts model on these hierarchical lattices@11#!.
Therefore, Eq.~3! is an ~exact! alternative statement o
Luck’s original heuristic criterion of relevance of the ge
metric fluctuations. Irrelevancy of the fluctuations corr
sponds to accessibility of the nontrivial symmetric fix
point, whatever the initial conditions. In the irrelevant cas
the critical behavior of the aperiodic systems remains
changed with respect to the corresponding uniform mode

The problem now consists in the characterization of
new critical behavior under relevant geometrical fluctuatio
Andrade@12# has recently used a mapping for the success
of partition functions of aperiodic Ising models (q52) on
hierarchical lattices to investigate this question. For irr
evant geometric fluctuations, the critical behavior seems
remain unchanged with respect to the uniform system.
though the results are not conclusive, the critical behav
does seem to change for an Ising model on a diamond-
lattice with m5b53, and layered aperiodic exchange inte
actions according to the rule (A,B)→(ABB,AAA). To go
beyond this work, we analyzed some families of aperio
q-state Potts ferromagnets on diamondlike lattices to sh
that they do present a novel critical behavior~different from
the uniform case, but universal! under relevant geometri
fluctuations. This novel critical behavior can be exac
traced to new features in parameter space, exclusively rel
to the relevant geometric fluctuations.

Consider the Potts model on a lattice withb52 bonds per
branch, and interactions according to the period-doub
rule. From Eq.~3!, for m52, fluctuations are relevant ifq
.412A2 ~for m53, the threshold value ofq turns out to be
somewhat lower, and so on!. The recursion relations ar
given by

xA85S xAxB1q21

xA1xB1q22D m

, ~4a!
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xB85S xA
21q21

2xA1q22D m

, ~4b!

where xA,B5exp(qbJA,B), with b51/kBT. Besides the uni-
form ~diagonal! fixed point, we have found a cycle of perio
two in the relevant regime~that is, the two-cycle is presen
when the nontrivial diagonal fixed point is fully unstable!.
Moreover, the two-cycle appears clearly as a bifurcation,
points running away from the symmetric fixed point asq
increases. In terms of the second iterate of the recursion
lations ~of which each point of the two-cycle is a fixe
point!, it displays a saddle-point character, with stable a
unstable manifolds. Supposing that this two-cycle is ass
ated with a novel critical behavior, we use standard sca
arguments to predict the critical exponenta of the specific
heat. Let us callx the single relevant variable describing th
parameter space in the neighborhood of the two cycle. In
thermodynamic limit, we write the reduced free energy p
bond in the scaling form@13#,

f ~x!5g~x!1
1

b2D
f ~x9!, ~5!

whereg(x) is a regular function related to the free energy
the decimated spins,x9 is a second iterate of the recursio
relations, and b is the linear rescaling factor of th
renormalization-group transformation~which coincides, for
diamondlike lattices, with the parameterb of the basic dia-
monds@14#!. Note the presence of the factorb2D, related to
the need of two iterations to go back to the neighborhood
the starting point in parameter space. Equation~5! has the
asymptotic solution

f ~x!.ux2x* u22aPS lnux2x* u
ln Lcic

D , ~6!

wherex* is one of the points of the two-cycle,Lcic is the
largest eigenvalue of the linearization of the second iterat
the recursion relations about any one of the points of
cycle, P(z) is an arbitrary function of period one, and th
critical exponenta, associated with the specific heat, is giv
by

a5222
ln bD

ln Lcic
5222

ln~mb!

ln Lcic
. ~7!

The values ofa predicted by Eq.~7! are unequivocally
different from the valuesau for the specific heat exponent i
the uniform cases, as can readily be seen in Table I, for
simple diamond lattice,m5b52, with layered exchange in
teractions according to the period-doubling sequence. A
the Monte Carlo simulations for the aperiodic 8-state Po
model on the square lattice@10#, there is a clear weakenin
of the critical singularities due to the geometric fluctuatio
~a feature also present in disordered systems!. Similar con-
clusions can be drawn forb52 diamond-type lattices with
different values ofm andq, and the period-doubling subst
tution.
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TABLE I. Results for the location of the two-cycle, eigenvalues of the second iterate of the recursion relations about the poin
two-cycle and the specific-heat critical exponent,a, as predicted by Eq.~7!, for some values ofq, in the case of them5b52 diamond with
the period-doubling substitution. The value of the exponent in the uniform (JA5JB) case,au , is also shown for comparison.

Location of the two-cycle Eigenvalues of 2nd iterate
q (xA ,xB)1 (xA ,xB)2 L1 L2 a au

7 (5.285 . . . ,7.642 . . . ) (6.697 . . . ,4.750 . . . ) 3.993 . . . 0.985 . . . 20.0022 . . . 0.010 . . .
25 (6.942 . . . ,234.34 . . . ) (39.023 . . . ,3.831 . . . ) 4.243 . . . 0.343 . . . 0.0817 . . . 0.404 . . .
100 (181.71 . . . ,5.721 . . . ) (13.753 . . . ,5151.84 . . . ) 4.975 . . . 0.074 . . . 0.2720 . . . 0.648 . . .
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We performed the same analysis for the Potts mode
the b53 generalized diamond lattice, with interactions a
cording to the rule (A,B)→(ABB,AAA). Now, the recur-
sion relations are given by

xA85F xAxB
21~q21!xA12~q21!xB1q~q23!12

xB
212xAxB1~q22!xA12~q22!xB1q~q23!13

Gm

,

~8a!

and

xB85F xA
313~q21!xA1q~q23!12

3xA
213~q22!xA1q~q23!13

Gm

. ~8b!

For all values ofm, the condition of relevance, given by Eq
~3!, is satisfied forq>2 ~including the Ising model,q52).
Again, besides the fully unstable fixed point, we have
tected the presence of a two-cycle. The same sort of sca
analysis has been performed. Table II gives some results
b53 andm52. We see that the weakening of the critic
singularities is again indicated by these data, the same t
being present form53.

The presence of these two-cycles seems to be assoc
with the alternance of two energy scales, given byJA and
JB . The iteration of the recursion relations leads to the al
native dominance of each one of them~as it can already be
seen in the behavior of the fluctuations in the number
lettersA andB along a substitution sequence!. To check this
argument, we performed some calculations for the ferrom
netic Potts model on a simple diamond lattice,m5b52,
with aperiodic interactions according to the four-lett
Rudin-Shapiro rule, (A,B,C,D)→(AC,DC,AB,DB),
whose fluctuations are known to be relevant even in the Is
case@9#. Indeed, we have found a cycle of period four, alo
with fully unstable two-cycles, in regions of parameter spa
associated with the symmetries of the sequence.

To test the validity of the scaling arguments, and of t
role of the two-cycle as the responsible for the new criti
behavior, we have performed a direct numerical analysis
the singularity of the free energy. In real-spa
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renormalization-group calculations, it is well known that t
~reduced! free energy can be expressed as an infinite se
@15#. For the Potts model on theb52 diamond-type lattice,
with the period-doubling rule, it takes the form

f ~xA ,xB!5 (
n50

`
1

~2m!n F1

3
ln~xA

(n)1xB
(n)1q22!

1
1

6
ln~2xA

(n)1q22!G , ~9!

where xA,B
(n) indicate then-th iterates of the recursion rela

tions, Eq.~4!. If we assume uniform convergence, this ser
can be differentiated term by term, and then summed i
computer, to obtain the specific heat per bond. We also u
direct numerical differentiation as a control of this assum
tion of uniform convergence. The critical temperature can
determined with high precision by making use of the ex
tence of the trivial paramagnetic fixed point atT50, corre-
sponding toxA,B5`, which causes the apparent divergen
of the series~9! if summed without the use of any regula
ization trick. Fixing the parametersq and m, and also the
strengths ofJA and JB , the critical temperature thus calcu
lated in fact placesxA,B in the attraction basin of the two
cycle. For irrelevant aperiodicity, as well as for the unifor
model, this method yields a critical temperature that loca
the system on the stable manifold of the uniform fixed poi

The singularity in the specific heat can be analyzed b
~nonlinear! fitting of a function to the data over a somewh
arbitrary scaling region. For the uniform and irrelevant cas
we have always obtained very good fittings, in excelle
agreement with the values ofau predicted by the usual sca
ing theory around the uniform fixed point. As it should b
anticipated, these fitted values did not present any detect
sensitivity on the values ofJA andJB . The particular prob-
lem of the Ising model (q52) on the simplem5b52 dia-
mond lattice, with exchange interactions according to
period-doubling sequence, had already been studied by
drade@12#, with the same conclusions. In the relevant cas
the situation is much subtler, and demands a more refi
TABLE II. Same as Table I, for the lattice withb53 andm52, with the rule (A,B)→(ABB,AAA).

Location of the two-cycle Eigenvalues of 2nd iterate
q (xA ,xB)1 (xA ,xB)2 L1 L2 a au

2 (6.446 . . . ,135.10 . . . ) (34.794 . . . ,5.224 . . . ) 3.255 . . . 0.311 . . . 21.0358 . . . 20.902 . . .
7 (11.469 . . . ,1649.66 . . . ) (126.59 . . . ,8.525 . . . ) 4.755 . . . 0.075 . . . 20.2981 . . . 20.185 . . .
100 (57.223 . . . ,1121275.02 . . . ) (3272.70 . . . ,34.683 . . . ) 9.808 . . . 0.001 . . . 0.4304 . . . 0.898 . . .
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analysis. For large values ofq, in which cases the scalin
analysis predicts positive values ofa ~although, of course
smaller than the corresponding values ofau), the fittings
presented excellent agreement with the scaling predicti
For weaker singularities~mainly a negative!, the fitted val-
ues were always somewhat bigger than the scaling pre
tions, with better agreement for increasing values ofq. For
m5b52, and the period-doubling sequence, let us g
some results of the fittings of the specific heat data t
function of the formA1Butu2a, wheret is the reduced tem
perature, and the parametersA andB must not be universal
For q57, we obtaineda520.005(4), which should be
compared witha520.0022 . . . . For q525, we havea
50.08(2), to be compared with the scaling valuea
50.0817 . . . . Forq5100, we havea50.27(1), to becom-
pared witha50.2720 . . . . Even in the cases of disagre
ment with the scaling predictions, the fittings indicate
sensitivity on the particular values ofJA and JB , and thus
characterize the universal nature of the critical behavior.
weak singularities, the discrepancies in the results can
probably be explained in terms of lack of numerical pre
sion, although it is in fact difficult to obtain a fully reliabl
fitting in these cases. This behavior can be probably trace
corrections to scaling that we are not considering in the
rect application of the scaling ideas to the two-cycles.
should be pointed out that the free energy takes differ
values in each point of the two-cycle, in such a way tha
may be ill defined in terms of just a simple scaling field.

We have performed the same kind of numerical check
a lattice with b53, and with the aperiodic rule (A,B)
→(ABB,AAA). Now, aperiodicity is already relevant forq
y
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52 ~Ising model!, and the two-cycle can be found forq>2,
and all values ofm. The situation turns out to be exactly th
same as before. The numerical value of the critical tempe
ture indeed locates the system on the attraction basin of
two-cycle. The agreement between the numerical fittings
the scaling predictions fora improves as the critical singu
larity grows stronger, which happens with increasing valu
of q. In the special caseq52, andm5b53, we and An-
drade@12# have calculated similar values,a520.90(9), to
be compared with the scaling prediction,a520.9684 . . . .

From the numerical calculations, we have observed
oscillatory behavior in the specific heat as a function of te
perature aboveTc . The period of these oscillations i
roughly given by Eq.~6!, with better agreement for increas
ing values ofq. These oscillations have also been found
Andrade@12#, and are well known phenomena related to
erarchical structures@16#.

In conclusion, we have given a number of examples
ferromagnetic Potts models on diamond-type hierarch
lattices to show that irrelevant geometric fluctuations do
change the~universal! critical behavior with respect to the
uniform cases. On the other hand, for two-letter subst
tional sequences, relevant geometric fluctuations give ris
a novel universal critical behavior associated with a tw
cycle in parameter space.
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