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Universal critical behavior of aperiodic ferromagnetic models

T. A. S. Haddad, S. T. R. Pinhd, and S. R. Salinas
Instituto de Fsica, Universidade de”®aPaulo, Caixa Postal 66318, 05315-970,03Raulo, SP, Brazil
(Received 30 June 1999; revised manuscript received 22 September 1999

We investigate the effects of geometric fluctuations, associated with aperiodic exchange interactions, on the
critical behavior ofg-state ferromagnetic Potts models on generalized diamond hierarchical lattices. For lay-
ered exchange interactions according to some two-letter substitutional sequences, and irrelevant geometric
fluctuations, the exact recursion relations in parameter space display a nontrivial diagonal fixed point that
governs the universal critical behavior. For relevant fluctuations, this fixed point becomes fully unstable, and
we show the apperance of a two-cycle, which is associated with a novel critical behavior. We use scaling
arguments to calculate the critical exponentf the specific heat, which turns out to be different from the
value for the uniform case. We check the scaling predictions by a direct numerical analysis of the singularity
of the thermodynamic free energy. The agreement between scaling and direct calculations is excellent for
stronger singularitiefarge values o§). The critical exponents do not depend on the strengths of the exchange
interactions.

PACS numbsgs): 05.50+q, 05.10.Cc, 05.70.Fh, 64.60.Ak

Quenched disorder may change the critical behavior of Relevant aperiodicity is believed to drastically weaken, or
ferromagnetic spin systenid]. Although disorder provides eventually suppress, the critical singularitigd. Recently,
the more usual examples, there are alternative ways to breajonvincing Monte Carlo evidendd0] has been presented to
translational invariance. For instance, the interest in théndicate that relevant layered aperiodicity in the 8-state Potts
study of quasicrystalf2] inspired a number of proposals of model on the square lattice drives the phase transition from
deterministic schemes to build spatially aperiodic structuresgyst to second ordefwith critical exponents independent of
In analogy with the Harris criterion to account f_or.the effectsipe strength of the couplingsin the present paper, we also
of quenched disorder, Ludig] developed a heuristic reason- getect a weakening of the critical singularities for relevant
ing to gauge the relevance of geometric fluctuati@ssoci-  geometric fluctuations. Besides being numerically exact, our

ated with aperiodic interaction®n the critical behavior of oq 1t can be regarded as equivalent to a Migdal-Kadanoff
]gtri(c))rr??A%n(acclz?%?iltz:i)gnBrzz\éaé)seleagtlgigétllg 3;5823%8?tg'épproximation for the analogous problems on Bravais lat-
g-state ferromagnetic Potts model on a diamond-type hiera%§f6 ﬁgginmg[ié]h us be put in perspective with the Monte
chical lattice. Now, we revisit this problem to show the ex- Th t% P .tt ; t is defined by the Hamil
istence of an attractor that gives rise to a novel class of . € g-state Fotts terromagnet 1s defined by the Hamii-
critical behavior. tonian

Many investigations of aperiodic classid&l] and quan- B E
tum[6] Ising chains, and two-dimensional Ising models with H= _q(i D ‘]iuj5‘7i o @)
aperiodic layered interactiog], use the formalism of sub- ’
stitution rules on alphabets for the construction of infinitewheres,=1,2, . . . g for all sites of a lattice), ;>0, and the
aperiodic sequences of elements, which are then associatgdm over {,j) refers to nearest-neighbor pairs of sites. We
with coupling constants along a direction of the lattice. Weassume that the couplings can take only two valdgsand
have taken advantage of the structure of hierarchical latticeg, associated with the sequence of lettérand B of an
[8] to build layered aperiodic modef®], which are then  gaperiodic substitutional word. To generate this sequence, we
amenable to simpléand exagtrenormalization-group calcu- can use, for example, the successive iterations of a period-
lations. In parameter space, there is always a “diagonal,"qoubling rule, given by &,B)—(AB,AA). In Fig. 1, we
nontrivial, fixed point of the renormalization-group recursion show a simple diamond hierarchical lattice with aperiodic

fixed point, assoc!ated with the critical behavior of the uni-corresponding coupling constants, are chosen to mimic a lay-
form (equal couplings model, becomes fully unstable, and

therefore, cannot be reached from any nonuniform initial
conditions in parameter spa¢é]. The critical behavior of

the aperiodically perturbed system, in case of a phase transi-
tion, should then be governed by another attractor in param-
eter space.

A
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"Permanent address: Instituto desiEa, Universidade Federal da FIG. 1. Three successive generations of the simple diamond
Bahia, 40210-340, Salvador, BA, Brazil. lattice (b=m=2).
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ered structurg In general, we may consider basic “dia- and
monds” with m branches andb bonds along each branch,
and generate hierarchical lattices with intrinsic, or fractal,
dimension,D =In(mb)/In(b). In each one of these structures,
aperiodicity may be implemented by a substitution rule of
the form (A,B)— (A™B"~"1,A"B"~"2), with 0=<ny,n,<b.  wherex, z=exp@Blag), With B=1kgT. Besides the uni-
These sequences are characterized by a substitution mattigym (diagona) fixed boint, we have found a cycle of period
with eigenvalues\;=b and A,=n;—n,. The asymptotic  two in the relevant regiméhat is, the two-cycle is present
form of the.fluctuations in the number of letters depends ofyhen the nontrivial diagonal fixed point is fully unstaple
the wandering exponent, Moreover, the two-cycle appears clearly as a bifurcation, its
log|\ | points running away from the symmetric fixed point @s
= 2 increases. In terms of the second iterate of the recursion re-
lations (of which each point of the two-cycle is a fixed

Now, we decimate the internal degrees of freedom of thdCind, it displays a saddle-point character, with stable and
diamonds to write exact recursion relations for the reducednStable manifolds. Supposing that this two-cycle is associ-
couplings. There is always a nontrivial fixed point on theated with a novel critical behavior, we use standard scaling

diagonal of parameter space, which is associated with th@'guments to predict the critical exponentof the specific
critical behavior of the uniform model. This fixed point be- heat. Let us calk the single relevant variable describing the
comes fully unstable fof4,9] parameter space in the neighborhood of the two cycle. In the

thermodynamic limit, we write the reduced free energy per
bond in the scaling formp13],

(4b)

xa+q—1\m
2Xp+q—2) '

“"Togng

w>1-

2—ay,’ ©
1
where the critical exponent,,, associated with the specific f(x)=g(x)+ @f(X”)' ©)
heat of the underlying uniform model, dependsgem, and

b (note that the transition is always continuous for the ferro- . :
magnetic Potts model on these hierarchical lattiEEs). whereg(x) is a regular function related to the free energy of

Therefore, EQ.(3) is an (exac} alternative statement of the (_jecimated spi.nsg” is a second itera}te of the recursion
Luck’s original heuristic criterion of relevance of the geo- relatlonsl,_ andb is the Imfear r('escargl_lnﬁ chtq(rj of fthe
metric fluctuations. Irrelevancy of the fluctuations Corre_rgnormall_iatllon—_group Frﬁna ormatidwhic ‘ ch0|nC| es, tor
sponds to accessibility of the nontrivial symmetric fixed diamondlike lattices, with the parametero t%De basic dia-
point, whatever the initial conditions. In the irrelevant casesMonds[14). Note the presence of the factof™, related to

the critical behavior of the aperiodic systems remains unt€ need of two iterations to go back to the neighborhood of

changed with respect to the corresponding uniform modelsthe Starting point in parameter space. Equatdhhas the

The problem now consists in the characterization of the*Symptotic solution
new critical behavior under relevant geometrical fluctuations.
Andrade[12] has recently used a mapping for the succession f(x)=|x—x* |2ap(
of partition functions of aperiodic Ising modelg€2) on
hierarchical lattices to investigate this question. For irrel-
evant geometric fluctuations, the critical behavior seems t@vherex* is one of the points of the two-cyclé\ ;. is the
remain unchanged with respect to the uniform system. Allargest eigenvalue of the linearization of the second iterate of
though the results are not conclusive, the critical behaviothe recursion relations about any one of the points of the
does seem to change for an Ising model on a diamond-typeycle, P(z) is an arbitrary function of period one, and the
lattice withm=b=3, and layered aperiodic exchange inter- critical exponentr, associated with the specific heat, is given
actions according to the ruleA(B)—(ABB,AAA). To go by
beyond this work, we analyzed some families of aperiodic b
g-state Potts ferromagnets on diamondlike lattices to show w=2-_2 Inb™ _ In(mb) )
that they do present a novel critical behavidifferent from In Agic In Agic’
the uniform case, but univergalinder relevant geometric
fluctuations. This novel critical behavior can be exactly The values ofa predicted by Eq(7) are unequivocally
traced to new features in parameter space, exclusively relatefifferent from the values, for the specific heat exponent in
to the relevant geometric fluctuations. the uniform cases, as can readily be seen in Table I, for the
Consider the Potts model on a lattice witk- 2 bonds per  simple diamond latticen=b= 2, with layered exchange in-
branch, and interactions according to the period-doublingeractions according to the period-doubling sequence. As in
rule. From Eq.(3), for m=2, fluctuations are relevant §  the Monte Carlo simulations for the aperiodic 8-state Potts
>4+ 2.2 (for m=3, the threshold value afturns outto be model on the square lattida0], there is a clear weakening
somewhat lower, and so pnThe recursion relations are of the critical singularities due to the geometric fluctuations
given by (a feature also present in disordered sysder8snilar con-
clusions can be drawn fdr=2 diamond-type lattices with
_ XaXgtQ—1 )m (4a) different values oim and g, and the period-doubling substi-
Xpat+Xxgt+q—2) tution.

(6)

In|x—x*|
In ACiC '
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TABLE I. Results for the location of the two-cycle, eigenvalues of the second iterate of the recursion relations about the points of the
two-cycle and the specific-heat critical exponentas predicted by Ed7), for some values o), in the case of then=b=2 diamond with
the period-doubling substitution. The value of the exponent in the unifdyw g) case,«,, is also shown for comparison.

Location of the two-cycle Eigenvalues of 2nd iterate
q (Xa,Xg)1 (Xa Xg)2 Ay A, ed ay
7 (5.28%...,76&...) 6.697...,479...) 3.9%8... 0.9%. .. -0.002... 0.010...
25 (692 ...,234.31...) (39.08...,383...) 4243 ... 0.343... 0.08T ... 0.4 ...
100 (181.2...5.724...) (13.78...,5151.8...) 4.975. .. 0.074 . .. 0.27D ... 0.6488...

We performed the same analysis for the Potts model omenormalization-group calculations, it is well known that the
the b=3 generalized diamond lattice, with interactions ac-(reduced free energy can be expressed as an infinite series
cording to the rule A,B)— (ABB,AAA). Now, the recur- [15]. For the Potts model on the=2 diamond-type lattice,

sion relations are given by with the period-doubling rule, it takes the form
XaX3+ (q—1)Xa+2(q—D)xg+q(q—3)+2 | ” 1
Xp=| . - F(Xa Xg) = > I+ xP+q-2)
Xg+2XaXg+ (0—2)Xp+2(q—2)xg+q(q—3)+3 n=0 (2m)"[3
(83 1
and + 52 +a-2)|, C)

m

Xa+3(q—1)xp+q(q—3)+2
3x3+3(q—2)xa+0q(q—3)+3

(n) . . . . . _
Xt = (8b) where x, 3 indicate then-th iterates of the recursion rela

tions, Eq.(4). If we assume uniform convergence, this series
can be differentiated term by term, and then summed in a
For all values ofm, the condition of relevance, given by Eq. computer, to obtain the specific heat per bond. We also used
(3), is satisfied forg=2 (including the Ising modelg=2).  direct numerical differentiation as a control of this assump-
Again, besides the fully unstable fixed point, we have de+ion of uniform convergence. The critical temperature can be
tected the presence of a two-cycle. The same sort of scalindgetermined with high precision by making use of the exis-
analysis has been performed. Table Il gives some results faence of the trivial paramagnetic fixed point&t0, corre-
b=3 andm=2. We see that the weakening of the critical sponding tox, g=2, which causes the apparent divergence
singularities is again indicated by these data, the same treraf the serieq9) if summed without the use of any regular-
being present fom=3. ization trick. Fixing the parameterg and m, and also the

The presence of these two-cycles seems to be associatetiengths ofJ, andJg, the critical temperature thus calcu-
with the alternance of two energy scales, givendyand lated in fact places, g in the attraction basin of the two-
Jg . The iteration of the recursion relations leads to the altercycle. For irrelevant aperiodicity, as well as for the uniform
native dominance of each one of théas it can already be model, this method yields a critical temperature that locates
seen in the behavior of the fluctuations in the number othe system on the stable manifold of the uniform fixed point.
lettersA andB along a substitution sequenc@o check this The singularity in the specific heat can be analyzed by a
argument, we performed some calculations for the ferromagtonlineay fitting of a function to the data over a somewhat
netic Potts model on a simple diamond lattice=b=2, arbitrary scaling region. For the uniform and irrelevant cases,
with aperiodic interactions according to the four-letterwe have always obtained very good fittings, in excellent
Rudin-Shapiro  rule, 4,B,C,D)—(AC,DC,AB,DB), agreement with the values of, predicted by the usual scal-
whose fluctuations are known to be relevant even in the Isingng theory around the uniform fixed point. As it should be
cas€9]. Indeed, we have found a cycle of period four, alonganticipated, these fitted values did not present any detectable
with fully unstable two-cycles, in regions of parameter spacesensitivity on the values af, andJg. The particular prob-
associated with the symmetries of the sequence. lem of the Ising modeld=2) on the simplen=b=2 dia-

To test the validity of the scaling arguments, and of themond lattice, with exchange interactions according to a
role of the two-cycle as the responsible for the new criticalperiod-doubling sequence, had already been studied by An-
behavior, we have performed a direct numerical analysis ofirade[12], with the same conclusions. In the relevant cases,
the singularity of the free energy. In real-spacethe situation is much subtler, and demands a more refined

TABLE Il. Same as Table I, for the lattice with=3 andm=2, with the rule A,B)—(ABB,AAA).

Location of the two-cycle Eigenvalues of 2nd iterate
q (X Xs)1 (Xa 1 XB)2 Ay Ay a ay
2 (6.4%4...,135.0...) B4.7%...524...) 32%... 0.31... —1.038... -09@...
7 (11.4® ...,1649.6 . . .) (126.®...,855...) 47%. .. 0.05. .. —0.298L . .. -0.18&...

100 (57.23...,1121275.2...) (3272.0...,34.68...) 9.8(8... 0.00L... 0.430%4. .. 0.8X8...
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analysis. For large values @f, in which cases the scaling =2 (Ising mode], and the two-cycle can be found fqe2,
analysis predicts positive values af (although, of course, and all values ofm. The situation turns out to be exactly the
smaller than the corresponding values «f), the fittings same as before. The numerical value of the critical tempera-
presented excellent agreement with the scaling predictionsure indeed locates the system on the attraction basin of the
For weaker singularitiegmainly @ negative, the fitted val-  two-cycle. The agreement between the numerical fittings and
ues were always somewhat bigger than the scaling predighe scaling predictions fos improves as the critical singu-
tions, with better agreement for increasing valuegj.oFor larity grows stronger, which happens with increasing values
m=b=2, and the period-doubling sequence, let us giveys g. In the special casg=2, andm=b=3, we and An-

some results of the fittings of the specific heat data to drade[12] have calculated similar values,= —0.909), to
function of the formA+Bl|t|™ ¢, wheret is the reduced tem- . compared with the scaling predicticmz, _0.96% .

perature, and the parametéraindB must not be universal. From the numerical calculations, we have observed an

Egrrnqa:rgé vv\\lltiethObial—ng %652:2_0.00501)!\, ;éCtheh?]Lz;I\(jle be oscillatory behavior in the specific heat as a function of tem-
-0 8&2) to ge_corﬁ ared. ;l\)ith thqe_ sc,alin valug perature aboveT.. The period of these oscillations is
=0.08]7 ' Forg— 10% we haver=0.271) tg becom- roughly given by Eq(6), with better agreement for increas-

) oo oM ' ' ' ing values ofg. These oscillations have also been found by

pared witha=0.272 . ... Even in the cases of disagree- ;
ment with the scaling predictions, the fittings indicate no”\ndrade(12], and are well known phenomena related to hi-
erarchical structuregl6].

sensitivity on the particular values df, and Jg, and thus X ,
characterize the universal nature of the critical behavior. For [N conclusion, we have given a number of examples of

weak singularities, the discrepancies in the results canndgomagnetic Potts models on diamond-type hierarchical
probably be explained in terms of lack of numerical preci-lattices to show that irrelevant geometric fluctuations do not

sion, although it is in fact difficult to obtain a fully reliable change the(universal critical behavior with respect to the
fitting in these cases. This behavior can be probably traced tgniform cases. On the other hand, for two-letter substitu-
corrections to scaling that we are not considering in the ditional sequences, relevant geometric fluctuations give rise to
rect application of the scaling ideas to the two-cycles. Ita novel universal critical behavior associated with a two-
should be pointed out that the free energy takes differentycle in parameter space.

values in each point of the two-cycle, in such a way that it _ _ _
may be ill defined in terms of just a simple scaling field. We are thankful for discussions with R. F. S. Andrade and

We have performed the same kind of numerical check fovery helpful suggestions and comments by A. P. Vieira and
a lattice with b=3, and with the aperiodic rule A;B) R. M. Damia. This work has been supported by the Brazil-
—(ABB,AAA). Now, aperiodicity is already relevant for ~ ian agencies FAPESP, CAPES, and CNPq.
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